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Abstract: The use of hierarchical Bayesian small area models, which take survey estimates along with
auxiliary data as input to produce official statistics, has increased in recent years. Survey estimates
for small domains are usually unreliable due to small sample sizes, and the corresponding sampling
variances can also be imprecise and unreliable. This affects the performance of the model (i.e.,
the model will not produce an estimate or will produce a low-quality modeled estimate), which
results in a reduced number of official statistics published by a government agency. To mitigate the
unreliable sampling variances, these survey-estimated variances are typically modeled against the
direct estimates wherever a relationship between the two is present. However, this is not always the
case. This paper explores different alternatives to mitigate the unreliable (beyond some threshold)
sampling variances. A Bayesian approach under the area-level model set-up and a distribution-free
technique based on bootstrap sampling are proposed to update the survey data. An application
to the county-level corn yield data from the County Agricultural Production Survey of the United
States Department of Agriculture’s (USDA’s) National Agricultural Statistics Service (NASS) is used
to illustrate the proposed approaches. The final county-level model-based estimates for small area
domains, produced based on updated survey data from each method, are compared with county-level
model-based estimates produced based on the original survey data and the official statistics published
in 2016.

Keywords: agricultural survey; Bayesian; bootstrap; small area estimation; unreliable variances

1. Introduction

Small area estimation methods include a wide range of modeling techniques generally
devised to improve estimates for domains where direct estimates are not reliable due to
small sample sizes. Area-level models are typically used in small area estimation under the
assumption that the survey data and the auxiliary information at the area level are available.
For continuous responses, the first and most commonly used area-level model is the Fay–
Herriot (FH) model [1]. A key assumption of the FH model is that the survey-estimated
variances are fixed and known. However, the sampling variances for small domains can
vary and be unreliable (beyond some threshold) due to very small sample sizes. This affects
the performance of the model (i.e., the model will not produce an estimate or will produce
a low-quality modeled estimate), which results in a reduced number of official statistics
published by a government agency. This paper proposes and explores two alternatives to
mitigate the unreliable survey-estimated variances. A Bayesian approach under the area-
level model set-up and a distribution-free technique using bootstrap sampling to update
the estimates from the survey are presented. By smoothing the sampling variances (further
used as hierarchical Bayesian (HB) small area model inputs), the proposed methods improve
the overall performance of the HB small area models. Both algorithms are general in nature
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and can be applied to surveys suffering from small area issues, such as unavailable or
unreliable survey summaries due to the volatility of sampling variances associated with
the survey design. For ease of understanding, we illustrate the two methods with data from
the United States Department of Agriculture’s (USDA’s) National Agricultural Statistics
Service (NASS) crops county estimates program.

The USDA’s NASS conducts the County Agricultural Production Survey (CAPS) to
obtain end-of-year estimates of the total planted acreage (P), total harvested acreage (H),
total production (G) and yield (Y) for dozens of small grains and row crops at the county
level. Yield is defined as the ratio of total production to the harvested acreage. Starting in
2020, several HB subarea-level (small area) models have been implemented as extensions
of the FH model to improve the precision of the estimates at the county level (see [2–
6]). The sampling variances of the yield estimates are produced using a second-order
Taylor series approximation and, due to various reasons (e.g., sparseness in data), could
result in zero, very small or very large estimated variances for several counties. This
contradicts one of the model’s assumptions, which is “the sampling variances are fixed
and known”. In the 2016 CAPS, the sampling variances of corn yield were very small
for approximately 10% of the counties [7]. The volatility of the variances estimated from
surveys directly affects the estimates obtained from the HB models for the corresponding
counties. It also indirectly affects the estimates produced through HB models for other
neighboring counties. This ultimately results in a reduced number of published modeled
county estimates for the US by the NASS.

Often, direct point estimates from surveys are not reliable for areas with small sample
sizes, and the corresponding sampling variances can also be imprecise and inaccurate [8].
The choice and accuracy of the existing techniques for small area estimation are dictated by
the quality of the available data in terms of both survey responses and covariates (see [9]).
The literature suggests different approaches under both frequentist and Bayesian frame-
works to mitigate unreliable survey-estimated variances. One common approach, known
as the generalized variance function (GVF), includes modeling survey-estimated variances
against some function of the direct estimator and other covariates [10] to smooth the noise
and make the variances stable. Researchers have proposed co-modeling of direct estimates
from the surveys and their variances within a model. For example, Maiti et al. [11] used a
frequentist framework, and Sugasawa et al. [12] considered a Bayesian approach, which
was further extended by Gershunskaya and Savitsky [13] to include nonparametric proba-
bilistic clustering. A hierarchical log-normal model was developed by Erciulescu et al. [14]
to mitigate unreliable sampling variances that were strongly related to direct estimates.
Then, the updated sampling variances were further used as input in a subarea HB model
for producing the corn harvested acreage. The log-normal model is also used to smooth the
survey-estimated variances of production totals since its assumptions hold for the produc-
tion totals too. However, this model’s assumptions do not hold for the yield. In addition,
exploratory data analyses do not indicate any relationship between the direct estimates
of the yield and their sampling variances that could easily be modeled. It is not always
easy to model the relationship between survey summaries (direct estimates and sampling
variances) using classical approaches due to the confounding factors involved. One can use
a Taylor series approximation under a subarea-level model, as shown in [7,14], to update
the variances in the yield.

The question of interest is how to mitigate the unreliable sampling variances in
scenarios where the relationship between the sampling variances and direct estimates
cannot be modeled using classical approaches. Using a case study from the 2016 CAPS,
Bejleri et al. [7] explored alternative approaches other than modeling, such as Taylor series
approximation and a data-driven technique using bootstrap sampling to mitigate survey
variances in the yield produced as zeros or below a threshold (1 bushel per acre). Measures
of uncertainty were produced from each approach for all US counties in the sample with
valid (positive) direct estimates of the yield. Even though the number of final modeled
county estimates increased, applying these alternative approaches to CAPS did not adjust
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for all extreme outliers of the sampling variances (i.e., extreme values in the upper tail of
the distribution were not updated by this method).

In this paper, a strategy that considers smoothing all extreme outliers of the sampling
variances to improve the performance of the HB small area models (which take survey
summaries and other auxiliary data as input) is introduced wherever the relationship
between the survey-estimated variances and direct estimates cannot be modeled using
classical approaches. Two alternative methods for mitigating unreliable (beyond some
threshold) survey-estimated variances of the yield at the county level are explored. Bayesian
modeling using a non-informative prior (hereafter called the Bayesian method) and an
empirical approach based on bootstrap sampling (hereafter called the bootstrap method) to
update the sampling variances for small domains are presented. The bootstrap sampling
is used to construct the empirical distribution of survey-estimated variances. The two
proposed approaches described in Section 3 smooth all unreliable sampling variances
into reliable inputs for the HB models. Steps describing the methodology discussed in
this paper for mitigating unreliable survey-estimated variances are presented in Figure 1.
For ease of understanding and illustration, the two methods are applied to data from
USDA’s NASS crops county estimates program (Section 4). The results from the case study
in Section 4 show substantial improvement in the modeled estimates produced based on
the updated sampling variances and an increase of approximately 10% in the number of
final model-based county estimates produced.

Figure 1. Flowchart describing the estimation process.
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This paper is structured as follows. The motivation for this work and some background
are presented in Section 2. The CAPS and the relationship between the survey’s direct
estimates and their survey-estimated variances are briefly discussed. The methodology
for generating (updated) survey variances in the yield for small domains is presented in
Section 3. The proposed Bayesian and bootstrap methods for updating the survey variances
are presented in detail. The county estimates produced by HB models, using as input the
direct estimates and the improved sampling variances derived from each approach, are
compared with the published official county statistics, and the results are discussed in
Section 4. The concluding remarks are presented in Section 5.

2. Motivation and Background
2.1. County Agricultural Production Survey

NASS has been producing official county-level crop inventories since 1917, but in 2011,
the NASS instituted major changes to improve the quality of the program. It implemented
the large-scale probability survey CAPS to provide county-level official estimates for 13
principal small grains and row crops in many states annually. County-level estimates
provide public benchmarks for farmers, ranchers and the industry, and they also serve
as key indicators of a number of federal and state agencies for farm policy formation,
program implementation and management. The CAPS list frame samples are selected
using a multivariate probability proportional to size (MPPS) sampling scheme in which
the measure of size is determined by more than one item. Sampling variances for the
totals (P, H and G) are estimated using a delete-a-group Jackknife (DAGJ), and the sampling
variances for the ratios (Y) are estimated using second-order Taylor series approximation
for the ratio (see [15]). Starting in 2020, NASS has used HB small area models, which use
survey direct estimates, sampling variances and auxiliary information as inputs to produce
the model-based estimates as the key indicators for the official statistics at the county level.

In this paper, we use the corn yield estimates from the 2016 CAPS as the case study.
The 2016 CAPS sample consists of 37 states comprising 2881 counties for corn. From these
counties, 2467 had positive planted acreages, 2361 counties had positive harvested acreages,
and 2329 counties had positive yields or production for corn. Exploratory data analysis of
the CAPS responses for corn yields in 2016 revealed that among the counties with positive
direct estimates, there were 241 counties with sampling variances (σ̂2

i ) equal to zero or that
fell 1.5 IQR(σ̂2

i ) below the first quartile and 107 counties with sampling variances that were
relatively large (i.e., that fell 1.5 IQR(σ̂2

i ) above the third quartile), where IQR stands for
the interquartile range. Let L = Q̂0.25 − 1.5 IQR(σ̂2

i ) and U = Q̂0.75 + 1.5 IQR(σ̂2
i ). The use

of these types of boundaries (L and U) has proven to be beneficial for outlier detection
(see [16,17]). We consider these boundaries throughout the paper to identify “anomalous”
counties. There were 348 counties with positive survey estimates of yields that fell outside
of the L and U boundaries in total, comprising more than 10% of all counties.

This paper addresses the question of interest (i.e., how to mitigate the unreliable
sampling variances) by adjusting for all extreme outliers of the survey-estimated variances.
Two approaches to mitigating the unreliable sampling variances that fall outside of the
boundaries (L and U) are introduced.

2.2. Exploring the Relationships between Direct Estimates and Their Variances

Exploratory data analysis of the 2016 CAPS summaries for corn from the sampled US
counties revealed a strong relationship (on a log scale) between the direct estimates and
their variances for P, H and G (see Figure 2). The relationship between the survey’s direct
estimates and their variances is modeled whenever a “good” relationship between the
two is present. A hierarchical log-normal model for the sampling variances of the survey
estimates was developed by Erciulescu et al. [14] to mitigate the zero variances for planted
acres, harvested acres and the production of corn. The coefficients were estimated using
the subset of sampled data, with survey estimates available (non-zero) for both quantities.
However, the log-normal model assumptions did not hold for the yield. The plot of the
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survey-estimated variances against the direct estimates of the yield for the sampled US
counties (in Figure 2) does not suggest any relationship that could be modeled using the
classical approaches suggested in the literature. We concentrate on sampling variances that
do not satisfy the assumptions of the log-normal model and use the 2016 CAPS corn yield
as a case study to illustrate the approaches proposed in this paper.

Figure 2. Direct estimates of total planted acres, harvested acres, production and yield for sampled
US counties in log scale.

3. Generating Survey Variances of the Yields for Anomalous Counties

In this section, we propose two alternative approaches for smoothing the survey-
estimated variances of the yield at the county level (i.e., generate new ones) for the counties
with survey variances that fall outside the threshold bounds (hereafter called “anomalous
counties”). A Bayesian method using a non-informative prior and a bootstrap method to
update the survey variances for small domains are presented in the next two subsections.
The first approach, a Bayesian method, uses the HB model setting. The second, a bootstrap
method, is a data-driven approach that utilizes bootstrap sampling to construct the em-
pirical distribution of variances estimated from the survey. This empirical distribution is
further used to generate updated variances for the anomalous counties. Considering the
empirical distribution of the survey-estimated variances within each state, one implicitly
accounts for the effect of agriculture intensity on the yield. In the case of large states
with, for example, varying climatic regions and agriculture intensities, one might want to
consider partitioning the state based on the agriculture intensity.

In each approach, the dataset is partitioned into two groups: counties with “good”
input data for the model that are indexed by ΘK and counties with positive survey estimates
and sampling variances beyond a predetermined threshold that are indexed by ΘN . A set of
updated variances is generated for the counties in ΘN . Then, the updated survey summaries
are fed into the subarea-level model in Equation (4) to produce the final modeled county
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estimates. The results from the two proposed approaches, the modeled estimates produced
based on the original model in Equation (5) and the survey’s direct estimates are compared
and discussed in Section 4.

3.1. A Bayesian Approach for Generating Sampling Variances in the Yields for Anomalous Counties

Let i = 1, . . . , n be an index for county i in a state. The survey’s direct estimate of yield
in county i is denoted by θ̂i, and the sampling variance is denoted by σ̂2

i . The auxiliary data
used in the models are denoted by xi, including an intercept. Let the thresholds (i.e., lower
and upper limits) for the survey estimated variances be γ1 and γ2 such that

γ1 = max{min(σ̂2
i ), Q̂0.25 − 1.5 IQR(σ̂2

i )},

γ2 = min{max(σ̂2
i ), Q̂0.75 + 1.5 IQR(σ̂2

i )},
(1)

where Q̂0.25 and Q̂0.75 are the first and third empirical quartiles of the variances in yield, re-
spectively, computed from the CAPS in a given state. In other words, γ1 = max{min(σ̂2

i ), L}
and γ2 = min{max(σ̂2

i ), U}, where the boundaries (L and U) are the ones defined in Sec-
tion 2.1.

Then, n counties can be separated into two groups. One group, consisting of counties
with variances that exceed the threshold, is indexed by ΘN =

{
i : 0 ≤ σ̂2

i ≤ γ1, σ2
i ≥ γ2

}
,

and the other group, consisting of counties with “normal” variances (i.e., within the
threshold), is indexed by ΘK = {i : γ1 < σ̂2

i < γ2}. In the proposed model set-up, we
assume for the counties in group ΘK that the survey variances are known, and for the
counties in group ΘN , the survey variances are unknown and need to be generated.

Consider the following HB model:

θ̂i|θi, σ̂2
i

ind∼ N(θi, σ̂2
i ), i ∈ ΘK,

θ̂i|θi, σ2
i

ind∼ N(θi, σ2
i ), i ∈ ΘN ,

θi|β, δ2 ind∼ N(x′iβ, δ2), i = 1, . . . , n,

(2)

where (β, σ2, δ2) is a set of nuisance parameters. The mathematical features of Equation (2)
are discussed in Appendix A. In addition, the Gibbs sampler is attached in Appendix B.

A diffused prior (i.e., a bivariate normal prior distribution with a fixed and known
mean β̂ and variance and covariance matrix 1000Σ̂β̂) is adopted for the coefficients β:

β∼MN(β̂, 1000Σ̂β̂).

Here, β̂ are the least squares estimates of β obtained from fitting a simple linear regression
model of the county-level survey estimates on the auxiliary data xi, and Σ̂β̂ is the estimated

covariance matrix of β̂.
The prior distribution chosen for σ2

i is

π(σ2
i ) ∝

1
σ2

i
, i ∈ ΘN .

Meanwhile, the prior distribution chosen for δ2 is

π(δ2) ∝
1
δ2 .

3.2. A Non-Parametric Approach to Generating Sampling Variances for Anomalous Counties

Let i = 1, . . . , n be an index for county i with a positive direct estimate (e.g., in our case
study, this is the survey estimated yield) in a given state, and let σ̂2

i represent the sampling
variance of the yield for county i. The “smoothing” approach based on bootstrap replicates
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consists of resampling with replacement n samples from the set of counties with “good”
sampling variances; that is, they satisfy the following inequality:

γ1 < σ̂2
i < γ2, (3)

where bounds γ1 and γ2 are defined in Equation (1). These bounds are computed for a given
state in our case study based on the variances in the yield obtained from the 2016 CAPS.

The order statistics of the resampled variances for a given state are considered as
realizations (of the quantiles) from the empirical distribution of the sampling variances of
the yield at the county level. These order statistics, obtained after each resampling iteration,
are recorded as columns of a matrix A of a size n× B, where B is the number of bootstrap
iterations. The averages from each row in A, taken over the B bootstrap iterations (i.e.,
obtained by averaging through the columns of A), are

σ̃2
(i) =

1
B

B

∑
b=1

ai,b,

where i = 1, . . . , n can be considered in lieu of the empirical distribution of the survey
variances. These quantities are used to replace their corresponding ordered values of
the original sampling variances σ̂2

(i) and therefore smooth the sampling variances of the
anomalous counties.

4. Case Study
4.1. Subarea-Level Models of the NASS

The subarea-level models were first developed by Fuller and Goyeneche [18] and
later studied in a frequentist framework by Torabi and Rao [19] and Rao and Molina [20].
Erciulescu et al. [5] presented a subarea-level model in a Bayesian framework, where the
area represents the agricultural statistics district (groups of neighboring counties within
a state, hereafter denoted as ASDs) and the subarea represents the county, and study its
performance under different scenarios of data availability.

Let i = 1, . . . , m be an index for m ASDs in the state, j = 1, . . . , nc
i be an index for

the nc
i counties in the ith ASD and nij be the sample size of the jth county in the ith ASD.

The total number of counties within a state is ∑m
i=1 nc

i = nc, and the state sample size

is ∑m
i=1 ∑

nc
i

j=1 nij = n. The direct estimate in county j within the ith ASD is denoted by θ̂ij,

and the associated variance estimated from the survey is denoted by σ̂2
ij. Illustrated for one

state, one commodity and one parameter (i.e., yield), the model is

θ̂ij|θij, σ̂2
ij

ind∼ N(θij, σ̂2
ij), i = 1, . . . , m,

θij|β, σ2
µ

ind∼ N(x′ijβ + νi, σ2
µ), j = 1, . . . , nc

i ,

νi|σ2
ν

iid∼ N(0, σ2
ν ),

(4)

where (β, σ2
µ, σ2

ν ) is a set of nuisance parameters.
A diffused prior is adopted for the vector parameter (coefficients) β (i.e., a bivariate

normal prior distribution with a fixed and known mean and a variance and covariance
matrix 1000Σ̂β̂), where β∼MN(β̂, 1000Σ̂β̂). Here, β̂ are the least squares estimates of β

obtained from fitting a simple linear regression model of the county-level direct estimates
from the survey on the auxiliary data xij, and Σ̂β̂ is the estimated covariance matrix of β̂.

Identical non-informative prior distributions (i.e., Uniform(0, 1010)) are adopted for σ2
µ

and σ2
ν . For more details on the choice of priors for the variance components in the Bayesian

models, see the discussion by Browne and Draper [21] and Gelman [22].
NASS publishes the yields to the nearest tenth of a bushel per acre. The variances in

yield estimated from the 2016 CAPS for corn were smaller than 0.01 bushels per acre for 215
counties. The nearest neighbor imputation technique is applied to fill in the missing data
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pairs, namely the missing direct estimates and missing corresponding sampling variances
that will be used to feed the HB model in Equation (4). However, with this approach,
counties with non-zero direct estimates and missing or equal-to-zero sampling variances
are not modeled. Furthermore, the model in Equation (4) cannot produce estimates (or
if produced, the estimates are unreliable) for the 348 counties with valid (positive) direct
survey estimates and corresponding sampling variances outside the threshold bounds (L
and U).

In more recent research on modeling yields at the county level in the NASS, counties
with valid direct estimates that are below some threshold sampling variances are considered
in the model. Instead of excluding them from the subarea-level model in Equation (4), these
unreliable sampling variances are assumed to be unknown (the same applies throughout
all anomalous counties) and are updated using a Bayesian technique. This approach is
formally presented by the updated subarea-level model in Equation (5). In what follows,
we briefly describe this research.

Let n counties be separated into two groups. One group, consisting of counties with
known direct estimates and sampling variances below some threshold (e.g., less than 1
bushel per acre for corn), is indexed by ΘM =

{
i, j : σ̂2

ij ≤ 1
}

. The other group, consisting
of counties with known direct estimates and sampling variances above the threshold, is
indexed by ΘA =

{
i, j : σ̂2

ij > 1
}

.
Then, the updated subarea-level model (hereafter addressed as the original model) is

θ̂ij|θij, σ̂2
ij

ind∼ N(θij, σ̂2
ij), i, j ∈ ΘA,

θ̂ij|θij, δ2 ind∼ N(θij, δ2), i, j ∈ ΘM,

θij|β, νi, σ2
µ

ind∼ N(x′ijβ + νi, σ2
µ), j = 1, . . . , nc

i ,

νi|σ2
ν

iid∼ N(0, σ2
ν ), i = 1, . . . , m,

(5)

where (β, δ2, σ2
µ, σ2

ν ) is a set of nuisance parameters.
The priors adopted for (β, σ2

µ, σ2
ν ) are the same as those in Equation (4), and the

prior adopted for δ2, the unknown constant variance throughout all anomalous counties,
is π(δ2) ∝ 1

δ2 .
The limitations of the original model in Equation (5) are twofold. First, the model

assumes that all unknown variances are the same, and second, not all unreliable sampling
variances are considered by the model. The variances with values that fall in the upper
extreme right tail of the distribution of sampling variances are unreliable and not considered
by Equation (5).

This paper addresses the challenge of improving the unreliable sampling variances for
counties with valid (positive) direct survey estimates more realistically. By considering all
unreliable sampling variances in both tails of the distribution (i.e., outside of the threshold
bounds L and U) and relaxing the assumption of constant (unreliable) variances throughout
small areas, this research overcomes the limitations of the original model shown in Equa-
tion (5). One can apply any of the two alternative approaches presented earlier in Section 3
to improve the HB model inputs. As an illustration, our case study shows that more reliable
final estimates of the yield were produced for the US counties by the HB model fed with
updated survey summaries (based on the two alternative approaches presented in this
paper) when compared with the existing approaches.

4.2. Results

In this section, nationwide results from different estimation procedures that used
CAPS data to produce the county-level corn yield estimates for 2016 are presented. We
compare the corn yield estimates and the associated measures of uncertainty produced from
the following:

• A survey;
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• The original model in Equation (5);
• The updated model in Equation (4) using improved sampling variances based on the

Bayesian method as the input;
• The updated model in Equation (4) using improved sampling variances based on the

bootstrap method as the input.

The Markov chain Monte Carlo (MCMC) simulation method was used to fit the
Bayesian models using R and JAGS [23]. The JAGS model descriptions used in the R
script are shown in Appendix C. All the Bayesian models are fit for each state individually,
and there were 37 corn states in the 2016 CAPS. In each model, three chains were run for our
MCMC simulation. Each chain contained 10,000 Monte Carlo samples, and the first 2000
iterates were discarded as a burn-in to improve the mixing of each chain. In order to
eliminate the correlations among the neighboring iterations, those iterations were thinned
by taking a systematic sample of one in every eight samples. Finally, 1000 MCMC samples
in each chain were obtained for constructing the posterior distributions of the parameters
and make inferences for the yield estimates. Convergence diagnostics were conducted to
make sure that the MCMC samples were mixing well. The convergence was monitored
using trace plots, the multiple potential scale reduction factors (R̂ close to one) and the
Geweke test of stationarity for each chain (see [24,25]). We found that the Geweke tests for
all the parameters in models (2), (4) and (5) were not significant, and the effective sample
sizes were all near the actual sample size of 1000. (Nearly all of them were 1000.)

For the bootstrap method, B = 1000 samples of a size n were used to construct the
empirical distribution of the sampling variances (see Appendix D). Then, as described in
Section 3.2, the new set of values was drawn from the empirical distribution to update the
unreliable variances for the “anomalous” counties within each state. The updated sampling
variances obtained via the bootstrap method satisfied the inequalities in model (3) and
provided more reasonable values for the extreme sampling variances, which were further
used as inputs in the model in Equation (4).

We recall here that the 2016 CAPS sample consists of 37 states comprising 2329 counties
with positive yields or production for corn. There were 99 counties with zero sampling
variances, 142 counties with positive sampling variances below L and 107 counties with
sampling variances that were relatively large, being greater than U. In total, there were 348
anomalous counties with sampling variances falling outside the bounds L and U. These
bounds defined, earlier in Section 2.1, vary by state.

Before comparing the final modeled estimates of the yields generated from all methods
discussed in this paper, we briefly show the improvement gained for the sampling variances
by applying the two proposed methods to the 348 anomalous counties. Table 1 shows
the five-number summary (i.e., minimum, first, second and third quartile, as well as
the maximum) of the survey-estimated variances, improved sampling variances based on
the Bayesian method and improved sampling variances based on the bootstrap approach
at the county level for the anomalous counties. It is straightforward to see that the survey-
estimated variances were highly right-skewed. A large part of those was very close to
zero or extremely small. The first quartile was 0.00, the median was 6.25 × 10−14, the third
quartile was 0.71, and the maximum was 5264.01. However, the variances generated
from both the Bayesian and bootstrap methods were improved. These updated variances
appeared to not be that extreme (i.e., they were far from zero), shifted more to the right
and were more centered than the survey-estimated variances. The minimum and first
quartile of the updated variances based on the bootstrap method were smaller than ones
generated by the Bayesian method (Table 1). The median, third quartile and maximum of
the updated variances based on the Bayesian method were smaller than the ones from the
bootstrap method.
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Table 1. Five-number summary of the sampling variances, improved sampling variances based on
the Bayesian method and improved sampling variances based on the bootstrap approach at the
county level in all anomalous counties.

Statistics Survey Bayesian Bootstrap

Anomalous Counties Min 0.00 10.09 1.74
1st Qu. 0.00 83.13 60.33
Median 6.25 × 10−14 124.05 142.36
3rd Qu. 0.71 167.16 289.66

Max 5264.01 1426.81 1685.06

The performance of each approach was evaluated based on the relative bias of the
final modeled estimates produced from each method toward the published estimates.
The absolute relative differences (ARDs) between the estimates from any procedure and
the published estimates were computed as follows:

ARD = 100×
∣∣∣∣∣ θ̃ − θP

θP

∣∣∣∣∣,
where θ̃ is the final modeled estimate or the survey’s direct estimate and θP is the corre-
sponding published county-level yield estimate.

Table 2 shows the nationwide results using a five-number summary of the ARDs
of the yield estimates produced from all four approaches, with a focus on the published
estimates for the anomalous counties and all available counties afterward. The median
of the ARDs when the Bayesian and bootstrap methods qwre applied in the anomalous
counties were 7.93% and 6.71%, respectively. These were much smaller than the median
ARD of the survey’s direct estimates and, to a lesser extent, smaller than the median ARD
of the estimates produced from the original model in Equation (5). The estimates based on
the Bayesian and bootstrap methods were generally closer to the published estimates in
the anomalous counties. Similar relationships can be seen in the third quartile. However,
the maximum ARD of the survey’s direct estimates was the smallest of all the other methods,
and this was because some of the direct estimates from the survey were missing, and other
methods provided a complete dataset. The median ARDs from the bootstrap approach were
the smallest in the anomalous counties. The maximum ARD of the estimates produced
by the Bayesian method was the smallest in the anomalous counties. In all counties, all
modeled estimates were generally closer to the published estimates when compared with
the direct survey estimates. Overall, Table 2 reveals an improvement in performance for the
HB models in small areas under the two proposed approaches. All five-number summaries
of the ARDs of the yield estimates based on the Bayesian and bootstrap methods were
smaller than those from the original model.
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Table 2. Five-number summary of the absolute relative differences (%) of the published estimates
and the estimates from the survey, original model and updated model using the improved sampling
variances based on the Bayesian method and bootstrap method as input, computed at the county
level in the US.

Statistics Survey Original Bayesian Bootstrap

Anomalous Counties Min 0.00 0.02 0.02 0.01
1st Qu. 3.63 4.96 2.62 2.43
Median 21.05 11.65 7.93 6.71
3rd Qu. 100.00 24.00 21.95 22.60

Max 140.66 199.70 187.43 195.60

All Counties Min 0.00 0.00 0.00 0.00
1st Qu. 0.60 0.60 0.57 0.51
Median 1.85 1.73 1.62 1.48
3rd Qu. 5.45 5.13 4.46 4.06

Max 140.66 199.70 187.43 195.60

In addition, the choropleth maps (Figure 3) depict the ARDs for the county-level
estimates produced from different methods in selected states, known as the corn belt states
for dominating the corn production in the US. As the difference between the estimates
produced from each method and the published estimates increased (relative to the pub-
lished estimate), the corresponding colored area became darker. Most counties are shown
as yellow, indicating that the estimates produced by the model were closer to the published
estimates. Counties shown from dark green to blue or purple on the map depicting the
estimates based on the survey (upper left corner) consisted of very small sample sizes
and unreliable sampling variances for the yield. The corresponding counties in other
maps, which depict the estimates based on the subarea-level models (original model in
Equation (5) and the model in Equation (4) with updated inputs) appeared to be much
lighter. For the areas with small sample sizes, the subarea-level models produced the yield
estimates by incorporating other (administrative) data and by “borrowing information”
across and within areas and subareas.

The correlation matrix of the published estimates of the yield, survey’s direct estimates
of the yield, estimates of the yield based on the original model in Equation (5), estimates of
the yield from the model in Equation (4) with improved sampling variances based on the
Bayesian method as the input and estimates of the yield from the model in Equation (4)
with improved sampling variances based on the bootstrap method as the input are shown
in Table 3. All the correlations were larger than 0.75, indicating high correlation among
the final estimates from all methods. The highest correlation with the published yield
estimates appeared for the estimates produced from the original model in Equation (5).
This was expected, since the published estimates were produced using several sources
of information where the original model (currently in production) plays a central role.
Furthermore, the correlation between the survey and the published estimates was the
lowest, since the direct survey estimates did not leverage model-based solutions designed
to improve the estimation accuracy. Table 3 also indicates that all model-based estimates
were more accurate than the survey estimates.
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Figure 3. Absolute relative differences (%) of the published estimates and the estimates from the
survey, original model and updated model using the improved sampling variances based on the
Bayesian method and bootstrap method as the input, computed at the county level for select states.

Table 3. Correlations among the published estimates of the yield, survey’s direct estimates of the
yield, estimates of the yield based on the original model, estimates of the yield based on the Bayesian
method and estimates of the yield based on the bootstrap method at the county level in the US.

Survey Original Method Bayesian Method Bootstrap Method

Published 0.8627 0.9577 0.9566 0.9485
Survey 0.8611 0.8716 0.8894

Original Method 0.9897 0.9790
Bayesian Method 0.9913

Table 4 shows the five-number summaries of the coefficients of variation (CVs) of
the county-level yield estimates from our case study, produced nationwide using the four
approaches discussed in this paper. We recall that there were 99 counties in the 2016
CAPS with zero sampling variances for the yield. Hence, the CVs from the survey for
these counties were not valid statistics, and these counties were removed from the CV
comparison. The CVs of the yield estimates from the survey among the anomalous counties
consisted of extreme values close to either zero or one. However, the CVs of the yield
estimates from the original model and Bayesian and bootstrap methods were more stable
than the CVs from the survey. The bootstrap method provided the smallest CVs among all
three methods. All the five-number summaries from the original model were larger than
the two alternative methods proposed in this paper. Over all counties, one can observe
the decrease in CVs (an increase in relative precision) from the models based on three
approaches when compared with the survey CVs. The original model had the smallest first
quartile CVs (2.51%). The smallest median, third quartile and the smallest maximum CVs
were shown when the bootstrap method was used. The results demonstrate the tendency
of the small area models to improve the accuracy of the estimates when compared with the
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accuracy of the survey estimates, especially in areas with small sample sizes (i.e., counties
with very large CVs).

Table 4. Five-number summary of coefficients of variation (CVs, %) of the yield estimates from the
survey, original model and the updated model using the improved sampling variances based on the
Bayesian method and the bootstrap method as input, computed at the county level in the US.

Statistics Survey Original Bayesian Bootstrap

Anomalous Counties Min 1.01 × 10−7 9.29 6.15 4.23
1st Qu. 5.00 × 10−7 14.13 8.85 8.27
Median 0.25 16.36 10.85 9.88
3rd Qu. 61.25 21.07 13.63 10.47

Max 97.70 46.42 39.36 16.06

All Counties Min 1.01 × 10−7 0.70 0.70 0.76
1st Qu. 2.59 2.51 2.54 2.54
Median 4.41 4.26 4.30 4.20
3rd Qu. 8.27 7.56 7.71 7.31

Max 97.70 46.42 52.93 40.09
Note: Ninety-nine counties with zero survey CVs were removed from this table. There were 249 anomalous
counties.

5. Discussion and Final Remarks

This paper introduces two alternative approaches to mitigating unreliable sampling
variances. In the parametric Bayesian method, we adopt non-informative priors to model
the unreliable sampling variances. The posterior means of the variance estimates are used
as inputs in the subarea-level model to generate the final modeled estimates of interest.
In the non-parametric bootstrap approach, we construct the empirical distribution of
the sampling variances by resampling without replacement from the reliable variances.
Drawings from this distribution are used to smooth the unreliable sampling variances,
which were further used as input for the HB subarea model to generate the final modeled
estimates of interest. NASS’s 2016 CAPS yield data for corn are used to illustrate each
approach. The final modeled estimates for the year 2016 at the county level are computed
using the updated sampling variances, which are produced based on each approach.

The novelty of the work presented in this article stands on introducing a strategy to
improve the performance of the HB small area models (which take survey summaries and
other auxiliary data as input) wherever the relationship between the survey-estimated
variances and direct estimates cannot be modeled using classical approaches. Two (statisti-
cally sound) alternatives, one parametric (Bayesian modeling under the area-level model
set-up) and the other non-parametric (distribution-free technique using bootstrap sam-
pling) for mitigating the unreliable (beyond some threshold) survey-estimated variances
are explored.

For ease of understanding and illustration, the two methods are applied to data from
the USDA’s NASS crops county estimates program (presented in Section 4). The orig-
inal model in Equation (5) treats all sampling variances smaller than one as unknown
and updates these variances into reliable inputs for the HB small area models. However,
the original model does not consider the extremely large sampling variances that are ex-
perienced in small areas. The two proposed approaches described in Section 3 take all
unreliable sampling variances into consideration and smooth these variances into reli-
able inputs for the HB subarea model. The results from the case study in Section 4 show
the improvement in the sampling variances among the anomalous counties. In addition,
substantial improvement is shown in the final modeled estimates produced based on the
updated sampling variances, as well as an increase of approximately 10% in the number of
final model-based county estimates produced. This has the potential to increase the number
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of counties published by the NASS as official statistics and, most importantly, with the
associated measures of uncertainty.

The techniques presented in this paper for improving the modeled estimates for small
domains are not limited to the application of HB small area models to agricultural data.
Both algorithms are general in nature (as described in Section 3) and can be applied to
any survey that suffers from small area issues. Applying these techniques assures the
relevance of using the HB models in small areas where estimates from surveys are missing
or not reliable and cannot be modeled using classical approaches. Improving the sampling
variances would allow for the HB small area models to achieve their intended objective
of producing reliable (and reproducible) estimates. In sum, we show that the issue with
HB models failing to provide reliable model-based estimates for small areas is solvable,
even in scenarios where the relationship between the survey-estimated variances and direct
estimates cannot be modeled using existing classical approaches. This paper provides a
strategy for the solution.
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Appendix A. Mathematical Feasures for Model (2)

It is pertinent to give a mathematical explanation of the features of the model in
Equation (2). For this discussion, we assume that β and δ2 are fixed but unknown. We
observe that Equation (2) has two submodels. For i ∈ ΘK, we have

θ̂i | θi, σ̂2
i

ind∼ N(θi, σ̂2
i ),

θi | β, δ2 ind∼ N(x′iβ, δ2),

For i ∈ ΘN , we have

θ̂i | θi, σ2
i

ind∼ N(θi, σ2
i ),

θi | β, δ2 ind∼ N(x′iβ, δ2).

The conditional posterior distributions of θi are

θi | θ̂i, σ̂i
2 ind∼ N{λi θ̂i + (1− λi)x′iβ, (1− λi)δ

2}, λi =
δ2

δ2 + σ̂2
i

, i ∈ ΘK,

and

θi | θ̂i, σ2
i

ind∼ N{λi θ̂i + (1− λi)x′iβ, (1− λi)δ
2}, λi =

δ2

δ2 + σ2
i

, i ∈ ΘN .
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The main difference in these two distributions occurs in λi (i.e., σ̂2
i versus σ2

i ).
In most applications, the cardinality of ΘK is much larger than that of ΘN ; that is,

the data from ΘK will dominate those from ΘN , and therefore, we can approximate β
and δ2 using the data from only ΘK. For example, denote the maximum likelihood estima-
tors (MLEs) as β̂ and δ̂2. Then, the MLEs from ΘK are substituted into ΘN to obtain the
adjusted model:

θ̂i | θi, σ2
i

ind∼ N(θi, σ2
i ),

θi
ind∼ N(x′i β̂, δ̂2),

where we assume that β̂ and δ̂2 are known. It is now easy to show that

θ̂i | σ2
i

ind∼ N(x′i β̂, δ̂2 + σ2
i ), i ∈ ΘN .

Finally, by reparameterizing this latter density, we can obtain the MLEs of the σ2
i from

π(θ̂i | σ2
i ) =

√
1

2π(δ̂2 + σ2
i )

exp

{
− 1

2(δ̂2 + σ2
i )

(θ̂i − x′iβ)
2

}

=

√
φi

2πδ̂2
exp

{
− φi

2δ̂2
(θ̂i − x′iβ)

2
}

, i ∈ ΘN ,

where φi =
δ̂2

(δ̂2+σ2
i )

, i ∈ ΘN and 0 < φi < 1. Now, the MLEs of φi can be obtained, which

we denote by φ̂i, and so we find the MLEs of σ2
i as follows:

ˆ̂σ2
i =

1− φ̂i

φ̂i
δ̂2.

Note that φ̂∗i = δ̂2/(θ̂i − xiβ)
2 are not really MLEs because the numerator may be zero

and φ̂∗i may not be in the open interval (0, 1). Therefore, when letting λ̂i = δ̂2/(δ̂2 + ˆ̂σ2
i ),

we have
θi | θ̂i, β̂, δ̂2, ˆ̂σ2

i
ind∼ N{λ̂ix′i β̂ + (1− λ̂i)θ̂i, (1− λ̂i)δ̂

2}, i ∈ ΘN .

Now, an inference can be made about the θi, i ∈ ΘN . The Gibbs sampler, a more
coherent procedure for fitting Equation (2), is given in Appendix B.

Appendix B. Gibbs Sampler for Equation (2)

Here, we show the Gibbs sampler for Equation (2) when i ∈ ΘK:

θ̂i | θi, σ̂2
i

ind∼ N(θi, σ̂2
i ),

θi | β, δ2 ind∼ N(x′iβ, δ2),

β ∼ MN(β̂, 1000Σ̂β̂),

π(δ2) ∝
1
δ2 .

The joint posterior density of θi, β, δ2 is given by

π(θi, β, δ2|θ̂i, σ̂2
i ) ∝

1
δ2 ∏

i∈ΘK

 1√
σ̂2

i

exp
{
− 1

2σ̂2 (θ̂i − θi)
2
}
× 1√

δ2
exp

{
− 1

2δ2 (θi − x′iβ)
2
}

×
√

det(Σ̂β̂)× exp
{
−1

2
(β− β̂)′(1000Σ̂β̂)

−1(β− β̂)

}
.
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The full conditional distributions for Gibbs sampling are as follows:

1. β|θ, δ2 ∼ MVN
(

Σβ

(
∑i∈ΘK θixi

δ2 + (1000Σ̂β̂)
−1β̂

)
, Σβ

)
,

where Σβ =

(
∑i∈ΘK xix′i

δ2 + (1000Σ̂β̂)
−1
)−1

;

2. θi|β, δ2 ind∼ N(λi θ̂i + (1− λi)x′iβ, (1− λi)δ
2), λi =

δ2

δ2+σ̂2
i

;

3. δ2|θ, β ∼ IG
(

n∗−1
2 , 1

2 ∑i∈ΘK (θi − x′iβ)
2
)

, where n∗ is the size of ΘK.

Appendix C. RJAGS Codes for the Models in Equations (4) and (5)

The following is the JAGS model description of the subarea model in Equation (4)
which was used in the R script.

model{
Xbeta <- cX%*%beta
for(j in 1:n){

#county
thetahatij[j] ~ dnorm(thetaij[j], 1/vhat.dirij[j])
thetaij[j] ~ dnorm(thetaij0[j], sigma2u.inv)
thetaij0[j] <- Xbeta[j] + vi[id[j]]

}
## Priors:
for (i in 1:m){

vi[i] ~ dnorm(0,sigma2v.inv)
}
sigma2v ~ dunif(0, 10^10)
sigma2v.inv <- pow(sigma2v , -1)
sigma2u ~ dunif(0, 10^10)
sigma2u.inv <- pow(sigma2u , -1)

beta ~ dmnorm(betahat ,Sigmahatbeta.inv)
Sigmahatbeta.inv <- inverse(Sigmahatbeta*10^3)

}

The following is the JAGS model description of the subarea model in Equation (5)
which was used in the R script.

model{
Xbeta <- cX%*%beta
for(j in 1:nt){

#county
thetahatij[nc[j]] ~ dnorm(thetaij[nc[j]],1/vhat.dirij[nc[j

]])
thetaij[nc[j]] ~ dnorm(thetaij0[nc[j]],sigma2u.inv)
thetaij0[nc[j]] <- Xbeta[nc[j]] + vi[id[nc[j]]]

}

for(k in 1:ntm){
thetahatij[nm[k]] ~ dnorm(thetaij[nm[k]], tau)
thetaij[nm[k]] ~ dnorm(thetaij0[nm[k]], sigma2u.inv)
thetaij0[nm[k]] <- Xbeta[nm[k]] + vi[id[nm[k]]]

}
## Priors:
for (i in 1:m){
vi[i] ~ dnorm(0,sigma2v.inv)

}
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sigma2v ~ dunif(0, 10^10)
sigma2v.inv <- pow(sigma2v , -1)

sigma2u ~ dunif(0, 10^10)
sigma2u.inv <- pow(sigma2u , -1)

beta ~ dmnorm(betahat ,Sigmahatbeta.inv)
Sigmahatbeta.inv <- inverse(Sigmahatbeta*10^3)

tau ~ dgamma (0.001 ,0.001)
vhat <- pow(tau ,-1)

}

Appendix D. R Code for the Bootstrap Methodology

The following is the code to smooth the sampling variance estimates using the boot-
strap approach as implemented in the R script.

getBSEstim <- function(ss , sfip , scale = 2, BS_ITER = 1000L) {
tapply(ss, sfip , function(xx) {

or <- order(xx)
nn <- length(xx)
fn <- fivenum(xx)
iq <- IQR(xx)
cc <- c(max(fn[1], fn[2] - scale * iq),

min(fn[5], fn[4] + scale * iq))
smp <- xx[xx > cc[1L] & xx < cc[2L]]
estim <- replicate(BS_ITER , {

sort(sample(smp , size = nn, replace = TRUE))
})
estim <- as.vector(rowMeans(estim))
estim[or] <- sort(estim)
return(list(bounds = cc, sample = xx, estim = estim))

})
}
sigmas <- as.numeric(dta$se2_G)
thetas <- as.numeric(dta$ratio2_G)
res <- getBSEstim(sigmas[thetas > 0],

dta$state_cd[thetas > 0], 1.5)
dta$BS_estim <- 0 * sigmas
ina <- is.na(sigmas)
for (i in names(res)) {

wh <- dta$state_cd == i & thetas > 0
dta[!ina & wh, ‘‘BS_estim ’’] <- res[[i]]$estim

}
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